數(shù)控機床工作效率來源于設(shè)備加工精密度 對于數(shù)控機床,其精度主要包括幾何精度傳動精度運動精度和位置精度等,如果出現(xiàn)精度超差,應(yīng)根據(jù)工件精度反應(yīng)出來的情況,借助子各種檢測工具,判斷出機床出現(xiàn)的是哪一類的超差,然后對可能引起這類誤差的因素逐一檢查,根據(jù)判斷,修復(fù)機械零件或者通過修改機床參數(shù)的方法,排除影響精度超差的因素。砂輪主軸的徑向跳動及軸向竄動將嚴重影響前刃面徑向跳動及導(dǎo)程誤差,進而影響至分度,而砂輪頭導(dǎo)軌與工件頭中心線平行度誤差將使導(dǎo)程超差,而分度盤精度將影響到分度精度。檢測后,發(fā)現(xiàn)砂輪主軸跳動以及砂輪頭與工件中心線超差。故對砂輪主軸及導(dǎo)軌進行檢查,發(fā)現(xiàn)砂輪主軸軸承及導(dǎo)軌導(dǎo)輪有較大磨損,故采取更換零件法進行替代。 因此,設(shè)計一個雙輸入單輸出模糊控制器來實現(xiàn)模糊控制,模糊控制器由模糊化,模糊推理決策及反模糊化組成,其主要作用是實現(xiàn)模糊算法,模糊控制器分為和通用兩類。如果選用模糊控制器,雖推理速度快,但昂貴,靈活性差。我們選用通用模糊控制器,如果由單片機軟件實時運行模糊推理決策,需要一定時間,將導(dǎo)致實時性差等問題。倘若事先通過離線的模糊化,模糊推理決策及反模糊化,取得一張模糊控制表,然后將此表放在單片機中??刂茣r,通過查表控制輸出量,就可解決實時性差的問題。 為了提高數(shù)控機床的加工精度及工作效率,必須把數(shù)控機床油箱溫度控制在一定的范圍內(nèi)。一方面,油溫的變化,直接影響數(shù)控機床溫度場的變化,而溫度場的變化,又影響位移場的變化,位移場變化,不可避免地影響加工精度。 另一方面,溫度變化,影響油液的黏度。通常情況,溫度上升,油液的黏度下降。黏度過高,阻力太大,不利液壓泵的起動和工作;黏度過低,容易引起漏油,影響整個液壓系統(tǒng)的穩(wěn)定性。另外,溫度過高,會影響液壓元件的壽命并改變液壓油本身的特性。油箱溫度模糊控制原理簡介任何事物本身存在模糊性。甚至可以定義為另外值,因此,由此推出的一整套理論,稱為糊模數(shù)學(xué)。模糊數(shù)學(xué)的一個重要分支是模糊控制。處理復(fù)雜問題時,模糊理論更接近于客觀存在的規(guī)律,尤其對時變、大遲延的被控對象來講,模糊控制比傳統(tǒng)控制更一些。模糊控制建立在人工經(jīng)驗的基礎(chǔ)上,對被控對象不需要有的數(shù)學(xué)模型。對于數(shù)控機床液壓油箱的溫度控制,操作人員較容易觀察到的是實際輸出溫度與設(shè)定溫度的差值,以及溫差的變化值。
如何解決數(shù)控機床加工精度異常的故障
生產(chǎn)中經(jīng)常會遇到數(shù)控機床加工精度異常的故障。此類故障隱蔽性強、診斷難度大。導(dǎo)致此類故障的原因主要有以下方面: 1)機床進給單位被改動或變化 2)機床各軸的零點偏置(NULLOFFSET)異常 3)軸向的反向間隙(BACKLASH)異常 4)電機運行狀態(tài)異常,即電氣及控制部分故障 5)此外,加工程序的編制、刀具的選擇及人為因素,也可能導(dǎo)致加工精度異常。 1.系統(tǒng)參數(shù)發(fā)生變化或改動 系統(tǒng)參數(shù)主要包括機床進給單位、零點偏置、反向間隙等等。例如SIEMENS、FANUC數(shù)控系統(tǒng),其進給單位有公制和英制兩種。機床修理過程中某些處理,常常影響到零點偏置和間隙的變化,故障處理完畢應(yīng)作適時地調(diào)整和修改;另一方面,由于機械磨損嚴重或連結(jié)松動也可能造成參數(shù)實測值的變化,需對參數(shù)做相應(yīng)的修改才能滿足機床加工精度的要求。 2.機械故障導(dǎo)致的加工精度異常 一臺THM6350臥式加工中心,采用FANUC0i-MA數(shù)控系統(tǒng)。一次在銑削汽輪機葉片的過程中,突然發(fā)現(xiàn)Z軸進給異常,造成至少1mm的切削誤差量(Z向過切)。調(diào)查中了解到:故障是突然發(fā)生的。機床在點動、MDI操作方式下各軸運行正常,且回參考點正常;無任何報警提示,電氣控制部分硬故障的可能性排除。分析認為,主要應(yīng)對以下幾方面逐一進行檢查。 ?。?)檢查機床精度異常時正運行的加工程序段,特別是刀具長度補償、加工坐標系(G54~G59)的校對及計算。 ?。?)在點動方式下,反復(fù)運動Z軸,經(jīng)過視、觸、聽對其運動狀態(tài)診斷,發(fā)現(xiàn)Z向運動聲音異常,特別是快速點動,噪聲更加明顯。由此判斷,機械方面可能存在隱患。 ?。?)檢查機床Z軸精度。用手脈發(fā)生器移動Z軸,(將手脈倍率定為1×100的擋位,即每變化一步,電機進給0.1mm),配合百分表觀察Z軸的運動情況。在單向運動精度保持正常后作為起始點的正向運動,手脈每變化一步,機床Z軸運動的實際距離d=d1=d2=d3…=0.1mm,說明電機運行良好,定位精度良好。而返回機床實際運動位移的變化上,可以分為四個階段:①機床運動距離d1>d=0.1mm(斜率大于1);②表現(xiàn)出為d=0.1mm>;d2>d3(斜率小于1);③機床機構(gòu)實際未移動,表現(xiàn)出zui標準的反向間隙;④機床運動距離與手脈給定值相等(斜率等于1),恢復(fù)到機床的正常運動。 無論怎樣對反向間隙(參數(shù)1851)進行補償,其表現(xiàn)出的特征是:除第③階段能夠補償外,其他各段變化仍然存在,特別是第①階段嚴重影響到機床的加工精度。補償中發(fā)現(xiàn),間隙補償越大,第①段的移動距離也越大。 分析上述檢查,數(shù)控技工培訓(xùn)認為存在幾點可能原因:一是電機有異常;二是機械方面有故障;三是存在一定的間隙。為了進一步診斷故障,將電機和絲杠*脫開,分別對電機和機械部分進行檢查。電機運行正常;在對機械部分診斷中發(fā)現(xiàn),用手盤動絲杠時,返回運動初始有非常明顯的空缺感。而正常情況下,應(yīng)能感覺到軸承有序而平滑的移動。經(jīng)拆檢發(fā)現(xiàn)其軸承確已受損,且有一顆滾珠脫落。更換后機床恢復(fù)正常。 3.機床電氣參數(shù)未優(yōu)化電機運行異常 一臺數(shù)控立式銑床,配置FANUC0-MJ數(shù)控系統(tǒng)。在加工過程中,發(fā)現(xiàn)X軸精度異常。檢查發(fā)現(xiàn)X軸存在一定間隙,且電機啟動時存在不穩(wěn)定現(xiàn)象。用手觸摸X軸電機時感覺電機抖動比較嚴重,啟停時不太明顯,JOG方式下較明顯。 分析認為,故障原因有兩點,一是機械反向間隙較大;二是X軸電機工作異常。利用FANUC系統(tǒng)的參數(shù)功能,對電機進行調(diào)試。首先對存在的間隙進行了補償;調(diào)整伺服增益參數(shù)及N脈沖抑制功能參數(shù),X軸電機的抖動消除,機床加工精度恢復(fù)正常。 4.機床位置環(huán)異?;蚩刂七壿嫴煌?br> 一臺TH61140鏜銑床加工中心,數(shù)控系統(tǒng)為FANUC18i,全閉環(huán)控制方式。加工過程中,發(fā)現(xiàn)該機床Y軸精度異常,精度誤差zui小在0.006mm左右,zui大誤差可達到1.400mm.檢查中,機床已經(jīng)按照要求設(shè)置了G54工件坐標系。在MDI方式下,以G54坐標系運行一段程序即“G90G54Y80F100;M30;",待機床運行結(jié)束后顯示器上顯示的機械坐標值為“-1046.605",記錄下該值。然后在手動方式下,將機床Y軸點動到其他任意位置,再次在MDI方式下執(zhí)行上面的語句,待機床停止后,發(fā)現(xiàn)此時機床機械坐標數(shù)顯值為“-1046.992",同*次執(zhí)行后的數(shù)顯示值相比相差了0.387mm.按照同樣的方法,將Y軸點動到不同的位置,反復(fù)執(zhí)行該語句,數(shù)顯的示值不定。用百分表對Y軸進行檢測,發(fā)現(xiàn)機械位置實際誤差同數(shù)顯顯示出的誤差基本一致,從而認為故障原因為Y軸重復(fù)定位誤差過大。對Y軸的反向間隙及定位精度進行仔細檢查,重新作補償,均無效果。因此懷疑光柵尺及系統(tǒng)參數(shù)等有問題,但為什么產(chǎn)生如此大的誤差,卻未出現(xiàn)相應(yīng)的報警信息呢?進一步檢查發(fā)現(xiàn),該軸為垂直方向的軸,當(dāng)Y軸松開時,主軸箱向下掉,造成了超差。 對機床的PLC邏輯控制程序做了修改,即在Y軸松開時,先把Y軸使能加載,再把Y軸松開;而在夾緊時,先把軸夾緊后,再把Y軸使能去掉。調(diào)整后機床故障得以解決。
|